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Highly nonlinear Bragg quasisolitons in the dynamics of water waves
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Finite-amplitude gravity water waves in Bragg resonance with a periodic one-dimensional topography are
studied numerically using exact equations of motion for ideal potential free-surface flows. Spontaneous for-
mation of highly nonlinear localized structures is observed in the numerical experiments. These coherent
structures consisting of several nearly standing extreme waves are similar in many aspects to the Bragg solitons

previously known in nonlinear optics.

DOI: 10.1103/PhysRevE.77.055307

The problem of water wave propagation over a nonuni-
form bed has been studied for many years mainly in low-
amplitude and/or weakly dispersive regimes, or for a mild-
slope bottom (see Refs. [1-12], and references therein). For
instance, the linear theory has produced many interesting re-
sults. In particular, if the bottom topography is periodic, then
an important phenomenon takes place, the Bragg reflection
of waves which satisfy the resonance conditions n\=2A,
where A is a spatial period of the bed structure, \ is the wave
length, and n=1,2... is an integer number. However, the
case of high-amplitude water waves in the Bragg resonance
with a periodic bed was not investigated. In the present pa-
per, the interaction of fully nonlinear planar waves with a
strongly undulating, nearly periodic one-dimensional (1D)
topography is considered. As we know from nonlinear op-
tics, periodic nonlinear media can support very interesting
localized waves as Bragg solitons (alternatively called gap
solitons; see, e.g., Refs. [13-22]). Also in the field of Bose-
Einstein condensation, Bragg solitons have been studied
[23-25]. As to the free-surface hydrodynamics, analogous
nonlinear structures have not been described up to now.
Therefore the main goal of the present work has been to
examine if analogous Bragg solitons are possible in water-
wave systems. For this purpose, exact evolutionary equations
for potential water waves over an arbitrary nonuniform 1D
bed, derived by the present author in Ref. [26], were solved
numerically. A few tens of numerical experiments have been
carried out, for slightly different bottom configurations. An
initial state in each case was a moderate-amplitude standing
wave (either slowly modulated or not) satisfying the main
Bragg resonance condition A=2A. It should be noted, there
are two kinds of such standing waves: cos-type waves, with
maxima and minima of the free surface elevation (and of the
surface velocity potential) being situated above the most
shallow points of the bed, and sin-type waves, when the
maxima and the minima are located above the deepest points
of the bed. Most importantly, the frequency w, of the cos-
type waves is larger than the frequency w_ of the sin-type
waves. These frequencies depend almost linearly on a
squared (dimensionless) wave amplitude A, and the corre-
sponding nonlinear shifts have been found both negative for
bottom profiles used in the simulations (for example, see
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Figs. 1 and 2). In this situation, the cos-type waves are sub-
jected to a modulational instability, which in the low-
amplitude limit Aj<<1 can be approximately described by a
nonlinear Schrddinger equation with focusing nonlinearity;
for Ay~ 1, there is no simplified model at the moment. The
instability can sometimes become saturated with Bragg soli-
tons or with similar structures. Indeed, after some time of
evolution, formation of specific large-amplitude localized
wave pulses has been observed in such systems. The pulses
consist of a few nearly standing steep waves, which have
peak-to-trough amplitude 2>0.4A (see Fig. 2). Though, un-
like the analytical solutions for perfect Bragg solitons from
the nonlinear optics (see Refs. [15-21]), these numerical lo-
calized water waves are not strictly time periodic, and we
still may call them “Bragg quasisolitons,” since their exis-
tence is caused by the same reasons, namely by the gap in
the frequency spectrum and by the nonlinear frequency
shifts. These water-wave Bragg quasisolitons are definitely
interesting from a theoretical viewpoint, and they also seem
potentially useful for practical applications.

Parameters of the numerical experiments. Exact explicit
equations of motion exploited here have been derived in Ref.
[26] from a variational formulation of the water-wave dy-
namics. A more simple way to obtain the same exact equa-
tions for two-dimensional ideal free-surface flows over an
arbitrary topography, with possible extensions to time-
dependent bottom profiles and to waves with constant vortic-
ity, is described in Refs. [27,28]. In this paper we consider
purely potential flows of an incompressible inviscid fluid
over a static bottom. We take into account the gravity accel-
eration g and neglect surface tension. It is convenient to
work with dimensionless variables as described below. Let
us assume that the dimensionless gravity acceleration is g
=1, and that a 27-periodic bed has K,=200 undulations. The
dimensionless time 7 is then related to the physical time ¢
=17 by a factor 7=(K,A/2mg)"?. For instance, the period of
linear deep-water waves with the length A=2A is T,
=(2m/\100)7=~0.6287, and their frequency is w,=27/T,.
The frequencies w, and w_ in Fig. 1 are shown normalized to
w,,.

We use a fixed analytic function Z({)=x+iy of a complex
variable {={;+i{, to parametrize a bottom profile in the fol-
lowing way:
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FIG. 1. Computed nonlinear frequency shifts
for the two kinds of standing water waves over a
i nonuniform bed with the parameters Dy=0.12,
i b=0.04, =0 (see text for details).

X&) +iv®(g)) = 2(£, +i0). (1)

In the numerical experiments described here, we chose
Z(Q)=B({-iay), where ay=m/K, and an analytic function
B(g) is given by the formula

sin(Koq)

[1+bcos(Kyq)] @

D
Blg)=q- ?0(1 + €¢0s q)
0

We fixed the parameters Dy=0.12 and b=0.04, while for a
small modulation parameter € we used the following values:
€=0.00, 0.01, 0.02, and 0.05. The above form of B(g) gives
the bottom shape as it is shown in Figs. 2—4 for €=0.01 (for
€=0.00 it looks much the same, a difference is almost invis-
ible). It is clear that we deal with an intermediate case be-
tween deep-water and shallow-water waves. It should be
noted that the horizontal line {,=a, maps to the horizontal
line y=0, and therefore, due to the symmetry principle, the
curvilinear coordinate system [x(¢;,%,),y({;, )] is certainly
valid for 0={,=2a; in any case it is good for a surface
elevation [y| $0.35A, as it is seen from Figs. 2 and 5.

The profile of the free surface is parametrized by the for-
mulas

X9(9,1) + iYW(9,1) = Z(&(9.1)), (3)

0,0)= O+ ialt) +[1+iR,]p(9.1), (4)

with unknown real functions «(z) and p(J,). The linear op-
erator R, is diagonal in the discrete Fourier representation: in
[R,p(9,1)] the mth Fourier harmonics

0.6 T T

1 [(* .
polt) = — f p(9,0)e" ™49
27T 0

is multiplied by R,(m)=itanh(am). We set initially a(0)
=a, and p(¥,0)=0, thus having the horizontal free surface
y=0 at r=0.

The velocity field is determined through the surface value
of the velocity potential ¢/(9,7). At 1=0 we set (9,0)
=A(9)(100)72 cos[ 100+ y()]. In the simplest case A(I)
=A(=(0.15...0.25), and y(9)=0. Numerical results pre-
sented in Figs. 2—4 correspond to Ay=0.2.

The evolution of functions a(z), p(9,1), and (9,1) is
governed by explicit equations of motion (see [26-28]),

2

a(t) = - 1 Q(Md9Y, (5)
2m),
pPr== Re[gﬂ(-fa + Z)Q]s (6)
U =—Re[Dy(T,+1)Q] - _1®aF gImz(¢), (7)
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where ®=(1+iR ), and Q=(R,5)/|Z' (£)&s|% The linear
operator T, is diagonal in the discrete Fourier representation:
T ,(m)=—i coth(am) for m#0, T ,(0)=0. All kinds of non-
linear interactions are taken into account in the above system
of equations, unlike the situation in nonlinear optics, where
approximate simplified equations for wave envelopes are
used to derive analytic expressions for Bragg solitons (see,
e.g., [15-21]). Equations (5)—(7) were simulated with a high
accuracy (up to N=22° points in @ discretization), and results
of the computations are discussed below.

Results and discussion. It was mentioned earlier that in
the absence of the bottom modulation (e=0), the solution for
A(9)=A, and y(9)=0 is a purely standing nonlinear wave,
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FIG. 2. Bragg quasisoliton at a moment when
the surface elevation is high. The entire compu-
tational domain is 0=x=200 A, and the flow is
N e symmetric about x=100 A.
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FIG. 3. Formation stage in
evolution of a numerical water-
wave Bragg quasisoliton. Here the
free surface profiles are presented
from ¢/7=108.72 to t/7=110.00
with the time interval A7/ 7=0.04.
The wave profiles, except the last
one, are given vertically shifted
for convenience. Also, the bed
shape is shown, which is nearly
periodic with a spatial period A
(see text).

in the sense that the horizontal component of the velocity
field is identically equal to zero at x=[/A, for all integer /.
However, the fluid motion inside each “cell” [<x/A <(l
+1) is periodic in time only approximately, and at >0 the
free surface is never strictly horizontal, so the potential en-
ergy never returns exactly to zero, just to a relatively small
value (see, for example, Fig. 5). A nonzero e and/or some
nontrivial functions A(9) or y(9) inevitably result in redis-
tribution of the wave energy between “cells.” In this dynami-
cal process, participation is taken both by a coupling be-
tween the waves and the bottom, and by nonlinear
interactions between the waves.

In a more general case €# 0, the dynamics of the free
surface looks initially as a nearly standing wave, which how-
ever has a temporal phase ¢ =~rw,(9), with a weakly
¥-dependent function w, (). After some time, the gradient
/99 becomes sufficiently large, and then the second
stage comes, when an amplitude modulation of the wave
takes place. In this stage, there are some regions in the com-
putational domain, where the wave is far from being purely
standing (see Fig. 3). This second stage is ended with forma-
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tion of a localized wave group consisting of a few high
waves—a Bragg quasisoliton. A subsequent dynamics can be
different depending on the initial parameters. For example,
with relatively low initial amplitudes Aj=0.18 and with €
=0.01, we observed the quasisoliton to gradually decay after
several dozens of wave periods (not shown). A different ex-
ample is presented in Figs. 2-4, for €=0.01, Aj=0.2. In this
case [and in many other cases which are not shown here,
including nontrivial functions A(9) and y(9) for €=0], the
Bragg quasisoliton reaches such a high amplitude that wave
crests in the maximum are nearly singular. In some simula-
tions, double-peaked crests were observed. Thus, a kind of
wave collapse can take place, which is, however, beyond our
purely conservative model. Most probably, splashes will ap-
pear on the sharp crests in real situations.

Nonlinear processes in various physical systems, when
they result in localization of the energy in the form of some
coherent structures, are usually very important both for the
fundamental theory and for practical applications. In particu-
lar, spatially periodic nonlinear media are known to support
such highly energetic wave structures as Bragg solitons. In

y/A

FIG. 4. Highly nonlinear stage
in evolution of a water-wave
Bragg quasisoliton. The free sur-
face profiles are shown from t/7
=120.04 to ¢/ 7=121.32 (compare
to Figs. 2 and 3).
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FIG. 5. A high-amplitude standing wave. Note the appearance of
double-peaked crests.
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the nonlinear optics, they have been studied for more than
two decades. The present work predicts Bragg (quasi)soli-
tons in the free-surface hydrodynamics. This prediction is
based on accurate numerical solutions for finite-amplitude
inviscid water waves in Bragg resonance with a strongly un-
dulating nearly periodic bottom. Though in a real situation
the bottom friction and other dissipative effects can some-
times modify the present results, the author believes water-
wave Bragg quasisolitons will be observed experimentally, at
least with A=1 m, when the dissipation is expected to be
relatively weak. A length L=50 A of an experimental wave
tank seems to be sufficient for that purpose.
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